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LETTER TO THE EDITOR 

Biased percolation: forest fires with wind 

T Ohtsuki and T Keyes 
Department of Chemistry, Boston University, Boston, MA 02215, USA 

Received 2 October 1985 

Abstract. Non-equilibrium percolating-non-percolating phase transitions in kinetic growth 
of percolation clusters in the presence of an external bias (biased percolation) describing 
the spread of forest fires with wind, etc, are investigated theoretically. A real space 
renormalisation group technique is used to calculate a phase diagram, critical exponents 
and spreading velocities explicitly in a square lattice. The effects of the bias on phase 
transitions and critical phenomena are clarified. The bias causes the directed spread 
belonging to a different universality class from that of the unbiased process. New critical 
exponents for spreading velocities of directed and reverse directed percolation processes 
are introduced and evaluated explicitly. 

Recently, there has been a growing interest in the investigation of kinetic growth of 
random clusters. Some processes exhibit a percolating-non-percolating phase transi- 
tion and build up percolation clusters (Alexandrowicz 1980). For instance, a model 
of forest fires studied by MacKay and Jan (1984) belongs to the same universality 
class as that of usual bond percolation (Janssen 1985, Cardy and Grassberger 1985). 
This model also describes autocatalytic chemical reactions and epidemic processes 
with immunisation (Grassberger 1983). In addition, it provides a typical example of 
many subjects of much current interest such as applications of percolation theories to 
dynamic processes (see, e.g., Wilkinson and Willemsen 1983, Kerstein 1984, Schulman 
and Seiden 1983), kinetic growth of fractal objects (Family and Landau 1984), non- 
equilibrium phase transitions and pattern formation (Nicolis and Prigogine 1977, 
Haken 1978) and (stochastic) cellular automata (Wolfram 1983, Kinzel 1985). Then 
the study of these processes is considered to be quite significant both practically and 
theoretically. 

MacKay and Jan (1984) pointed out the importance of an external bias due to 
wind, topography, etc, in the spread of forest fires. In chemical reactions and epidemic 
processes, external fields, such as solvent flow, are thought to play an important role, 
too. In thermal and geometrical (percolative) critical phenomena, it is known that, in 
the vicinity of critical points, systems show singular responses to external perturbations 
(Onuki and Kawasaki 1979, Meron and Procaccia 1983, Ohtsuki and Keyes 1984a). 
In kinetic growth processes, however, little is known about the influence of external 
fields. The purpose of this letter is to investigate biased growth of percolation clusters 
(biased percolation) and to clarify the effects of the bias on phase transitions and 
critical phenomena. We adopt a real space renormalisation group (RSRG) method and 
make explicit calculations of a phase diagram, critical exponents and spreading 
velocities. 

We consider the following process in a square lattice. Here we use the terminology 
of forest fires. The system is composed of fresh (unburnt), burning and burnt trees 
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(sites). We start with one burning tree in a densely packed lattice of fresh trees and 
construct a cluster of burnt trees step by step. Burning trees ignite their nearest- 
neighbour fresh trees with some ignition probability. A same bias (wind) is applied 
along both axes of a square lattice. Then ignition probabilities p +  in two preferred 
directions are equal and larger than those p -  in opposite directions. At the end of 
each step, all previously burning trees are turned into burnt trees and never ignited 
again. Note that when p + = p - ,  p-=O or p + =  1, the process belongs to the same 
universality class as that of isotropic, directed (Kinzel 1983) or reverse directed (Redner 
1983) percolation, respectively. 

Hereafter, we assume the existence of a RSRG transformation. This assumption is 
justified by self-similarity of percolation clusters (Kapitulnik et a1 1983). First, we 
determine recursion relations g+ and g- for p +  and p -  and compute a phase diagram. 
A usual cell-to-cell decimation scheme with a rescaling factor b = 2 is adopted and a 
group of bonds and sites are combined into superbonds and supersites, as illustrated 
in figure 1 (Reynolds et al 1977, Stanley et af 1982). Both on the original and the 

E 
Figure 1. Cell-to-cell decimation scheme. 

renormalised cell, the process is advanced until the top site is ignited or burning trees 
become extinct after starting with a configuration where only the origin (bottom site) 
is burning and others are fresh. Then ignition probabilities of the top site are calculated 
on both cells. In the spirit of a RSRG approach, the ignition probability is kept invariant 
under the transformation. Equating calculated probabilities, therefore, we obtain g+ 
and g-: 

( 1 )  

( 2 )  

where a prime denotes a renormalised quantity. 
Recursion relations ( 1 )  and (2) lead to a p +  against p -  phase diagram shown in 

figure 2.  There exist three phases. The phase I is a non-percolating phase where both 
p +  and p -  go to zero and only finite spread of the fire occurs. The phase I11 is an 
isotropic percolating phase where both p +  and p -  go to unity and there is a non-zero 
probability of infinite spread of the fire in all directions. The intermediate phase I1 is 
a directed percolating phase where p +  + 1, p -  + 0 and the fire can spread infinitely only 

2 3  p :  = g + ( p + , p - )  = ~ P + + P + - 3 p 4 + + p : + p - ~ P : - ~ P : + P 4 + ~  

p! .  = g-( p + ,  p - )  = 2p:  + p 3  - 3p4+p5 + p + (  p 2  -2p: +p4) 



Letter to the Editor L283 

0 0.5 
p+ 

1 .o 

Figure 2. p +  against p -  phase diagram. The star (*) and solid circles (0) denote non-trivial 
fixed points. 

within a certain opening angle 4. On the boundary between the phase, I and 11, = 0, 
while on the 11-111 boundary, 4 = 7r/2 (Kinzel 1983, Redner 1983). Between these 
boundaries (in the phase 11), 4 is considered to vary continuously from 0 to ~ / 2 .  

From ( 1 )  and (2), we can also derive critical exponents v for a correlation length 
.$ (Stauffer 1985, Reynolds et a1 1977, Stanley et al 1982). There are three non-trivial 
fixed points: ( a )  pT- = pT = 0.5, ( b )  pT = 0.555, p i  = 0 and (c) p ?  = 1, pT = 0.445. As 
mentioned before, the process along the line p+ = p - ,  p -  = 0 or p+ = 1 is equivalent to 
isotropic, directed (Kinzel 1983) or reverse directed (Redner 1983) percolation. Thus, 
fixed points ( a ) ,  ( b )  and ( c )  describe corresponding percolation thresholds. The 
isotropic percolation threshold ( a )  is a tricritical point and in the vicinity of ( a ) ,  6 obeys 

& ( E ] ,  E ~ )  = E; ’~F~(E?E;”B)  (3) 

5 ( %  0 ) s  E;”’  (4) 

5 ( 0 , 4  OC E;YB ( 5 )  

where Fs is a scaling function, = / E + +  E - / ,  E * =  [ E +  - &-I, E+ = Ip+ -p$I /p$<< 1 and 
E -  = Ip--p?l/p?<< 1 .  Critical exponents are given by vI = 1.43 and vB = 1.71. The 
behaviour (4) appears along the line p+ = p -  and is the same as that of isotropic 
percolation, whereas the behaviour ( 5 )  is observed when the threshold is approached 
via the phase 11. Critical exponents around ( b )  and (c) become vD = 1.54 and vR = 1.54, 
where vD and vR are defined by & ( E + )  E ; ” D (  p -  = 0) and &( E - )  oc EI’R ( p +  = 1 ) .  The 
exponent vD is equal to that vll for a parallel correlation length of directed percolation 
and the value 1.54 is a little smaller than that (1.76) of known estimates (Kinzel 1983). 

Transforming p +  and p -  into po = ( p+ + p - ) / 2  and B = p +  - p - ,  we can regard figure 
2 as a po against B phase diagram, where po represents the average ignition probability 
and B measures the strength of the bias (wind). Here the base line p +  = p -  expresses 
the po axis ( B  = 0) and the distance from this line stands for B. Hence, the phase 
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diagram informs us that generally the bias causes qualitative change of the process, 
i.e. the behaviour belonging to the .different universality class (the directed percolating 
phase 11). As approaching the threshold p $  = 0.5, the critical value B* of the bias 
for this change goes to zero and just at p $  = 0.5, in particular, even an infinitesimally 
small bias gives rise to the directed spread. From (3) ,  we find 

B * K  & ; I J V B  ( 6 )  

where \ p o - p $ l / p $ < <  1. It becomes evident that the biased growth of percolation 
clusters provides another example of singular responses to external fields near critical 
points (Onuki and Kawasaki 1979, Meron and Procaccia 1983, Ohtsuki and Keyes 
1984a). 

Next, we calculate the spreading velocity V of directed ( p -  = 0) and reverse directed 
( p +  = 1) percolation processes. The velocity V of the isotropic ( p +  = p - )  percolation 
process will be reported elsewhere. We apply a formalism quite similar to that for a 
diffusion coefficient on percolation lattices developed before (Ohtsuki and Keyes 
1984b). Here V is a function of three parameters: a lattice constant I, an ignition 
probability p and a unit time w of the process necessary to advance one step, where 
p denotes p +  (directed process) or p -  (reverse directed process). In order to determine 
V, therefore, a recursion relation f for w is necessary. This time, we calculate an 
average step number n until the top site is ignited and put w'n'= wn, which means 
preservation of a real time until ignition of the top site under the transformation. The 
resulting recursion relations are 

W'/W =f+(p+) = ( 4 + 3 ~ + - 8 ~ : + 3 ~ : ) / ( 2 + ~ + - 3 p t + p : )  (P- = 0) (7) 

w'/w = f - ( p - )  = ( 7 - 3 p _ - 5 p 2 _ + 3 p 3 ) / ( 3 - p - - 2 p z _ + p 3 )  (P+ = 1). (8) 

The 7~ theorem (Barenblatt 1979) and the requirement that V is kept invariant 
under the transformation lead to 

V (  J ' ,  p ' ,  w'; t) = V (  I ,  p ,  w ;  t) = Zw-' V*( p ,  T )  (9) 

Substitution of ( l) ,  ( 2 ) ,  (7), (8) and the relation Z'= bl into (9) yields a recursion 
where T = t /  w and V* is a normalised dimensionless velocity. 

relation for V*: 

V*(P, n = b f ' V * ( g , f ' T )  (10) 

where g, f are g + ,  f+ or g-, f-. Iterating the transformation k times, we have 

v * ( p ,  T ) = p k  E b / f ( p i )  
i = O  

Pi+' = g ( p i )  ( P o = P )  (11) 

In this letter, V is defined by a time derivative of an average cluster size, e.g. a radius 
of gyration. Thus, we use an initial condition V(I, p ,  w ;  w )  = plw-', because at t = w, 
namely after one step, a cluster spreads pl  on average. Using ( l l ) ,  we can perform 
explicit calculations of V*. In general, V* depends on the opening angle 4. In the 
directed percolation process ( p -  = O), VT obtained from (1 1) describes that at #J = 0, 
while in the reverse process ( p+ = l ) ,  VT calculated from (1 1) represents that at #J = 7 ~ .  
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Scaling relations for V* in the vicinity of a threshold as E = Ip - p * ( / p *  << 1 are also 
derived from (10). Linearising recursion relations g and f around fixed points and 
substituting them into (lo),  we get 

V * ( E ,  T )  = bA;’V*(A,&, Ai ’T)  (12) 

where Ap = ag/apl,=,* and A, 
function and satisfies scaling relations (Stanley 1971) 

It follows that V* is a generalised homogeneous 

V*(&, T )  = EeFV(&TX’”) 
V*(E, CO)a & @  

V*(O, T)cc T*-’ (15) 

with critical exponents 8 = ln(A,/b)/ln(A,), x = ln(b)/ln(A,) and v = ln(b)/ln(A,). 
The relaxation time 7 of the process is estimated from 5Q: E - ”  - VTX T ~ ,  where V7 
represents an average cluster size. Hence, the following relation among critical 
exponents hold: 

$ = e +  V =  (16) 

where $ is a critical exponent for T defined by E-’ (Alexandrowicz 1980, Kinzel 
1983). Geometrically, $ describes the length of a minimum path (Pike and Stanley 
1981) along a directed or reverse directed percolation cluster. Notice that 8, or 
equivalently x or $, is a new critical exponent introduced here for the first time. 

Recursion relations ( l ) ,  (2), (7) and (8) give explicit values of critical exponents 
8 D  = 0.07, xD = 0.96, JID= 1.61, 8R = 0.21, xR = 0.88 and = 1.75. The calculated results 
of V* and Fv are plotted in figures 3 and 4. Figure 3 shows asymptotic values V*( p ,  a). 
Small values of the exponents 8 cause a sharp increase of V*( p ,  CO) near p * .  The 
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Figure 3. Asymptotic values of the spreading velocity V*( p ,  CO) for the directed (-) and 
reverse directed(---- -) percolation processes. 
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Figure 4. Scaling function Fv for the directed percolation process at E +  = 0.001 (*) and 
0.0002 (m) and that for the reverse directed percolation process at E -  = 0.001 (0) and 
0.0002 (A).  

scaling functions Fv are plotted in figure 4. The scaling relation holds well and the 
crossover occurs smoothly. 
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